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Motivation: Spectrum Aware Cognitive Radio

• Application of universal 

broadband signal classification

– Spectrum aware cognitive 

radio

– Spectrum surveillance 

3

• Requirements of signal classification receiver

– Robust broadband receiver for multiband coverage

– Signal separation for classification

– Wide bandwidth (up to 50 MHz) for multi-standard 

coverage

– Low power for mobile applications



System Architecture of Classification Receiver 
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• Multiple Antennas for spatial diversity

• Broadband tunable front-end with reconfigurable filter

• MIMO spectral overlap signal separation
– Multiplication of received matrix with learned weights that approximates inverse of 

the transmission channel

• ADC and DSP feedback learning
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Broadband Receiver with Jammer Challenge

• Jammer coupled with receiver non-idealities (LO phase noise, 
finite linearity IIP2 and IIP3) raises noise floor.

• A highly tunable frequency band selective filter for out-of-band 
jammer rejection is desirable.
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Direct Conversion Receiver Filter System Level Calculation

• With Pjammer = +0 dBm, NF = 5 dB, IIP2 = +50 dBm, oscillator phase noise 
of -162 dBc/Hz at jammer offset, and Filtering of 30 dB gives the 
sensitivity as: -91.75 dBm.

• Need approximately Aatten = 30 dB of filtering for 0 dBm jammer.
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Broadband Tunable Receiver with

N-path Filter Approach
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• (a) Multiple off-chip SAW filter approach

• (b) Tunable fully integrated filter approach [1]
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N-path Filter
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• Baseband capacitive impedance translated to ωLO 

• Out-of-band rejection limited by the resistance and parasitic 
capacitance of the CMOS switch
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N-path Filter – Intuitive Operation
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• Passive mixer translates baseband impedance to switching 

frequency [2].
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N-Path Filter Fundamental Limitation
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• Pass-band loss is approximately                               

• Out-of-band rejection is limited by switch Ron.

• Parasitic capacitance shifts peak S21 to lower frequency.
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Proposed Transmission Line N-path Filter

• Parasitic capacitance absorbed into transmission line.

• Out-of-band rejection improved by further low-pass filter created by L 

and Ron.

• Improves tradeoff between pass-band loss and out-of-band rejection.
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T-Line N-path Filter Simulation Results
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Out-of-band Rejection
Calculation

Transmission Line
N-path Filter

Traditional
N-path Filter

• Parasitic capacitance absorbed into transmission line improving in-band 
insertion loss.

• Out-of-band rejection improved by further low-pass filter created by L 
and Ron.
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T-Line N-path Filter Measurement Results
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Chip micrograph (3mm x 1.4mm).

K = 4, L/K = 3.8 nH, Qind = 16 at 2 

GHz, Selfres = 7.5 GHz

• Parasitic capacitance absorbed into transmission line improving in-

band insertion loss.

• Out-of-band rejection improved by further low-pass filter created 

by L and Ron.

13

0.5 1 1.5

-60

Frequency (GHz)



T-Line N-path Filter Measurement Summary
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N-path Filter LO Leakage Problem

• Uncalibrated leakage can range from -50 to -70 dBm [3].

• FCC limits spurious out-of-band emissions to -70 dBm (often 

violated) [3].

• Desensitize receiver or create DC offset [3].
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Mechanism of LO Leakage Radiation

Differential LO feed-through

proportional to:

Rs∙ΔC∙s

• Any asymmetry leads to LO leakage.

• Differential LO feed-through directly proportional to parasitic 

capacitance mismatch and frequency.
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Proposed N-path Filter with Pseudorandom Clocking

PN(t)

LOQ(t)

LOI(t)

t

t

• Same transfer function utilizing: LO(t)∙PN(t)∙PN(t) = LO(t).

• PN(t) is a low frequency, broad-spectrum PN sequence.
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Simulated PN Sequence Spectrum Shaping
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• Simulation of high-pass filtered PN (using iterative digital high pass: 
1 – Z-1).

• Simulation of filtered PN(t)∙LO(t) giving in-band null.
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PN N-path Bandpass Implementation

• Differential PN mixer to single-ended interface.
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Two Stage T-Line N-Path Filter
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� T-Line N-path Filter Technique 

[5].

� Ideally improve insertion 

loss

� Ideally improve rejection

� Two Stage Design.
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PN N-path Filter Measured Results
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Chip micrograph (1.1mm x 1mm) in 

65nm CMOS ribbon bonded to PCB.
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� Minimal degradation with PN ON and OFF.

� Jammer IP1dB compression +11 dBm (600 

MHz offset),  In-band IIP3 +22 dBm.
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Measured LO Leakage Improvement
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Measured in-band LO leakage at 1 GHz 

(RBW = 200 KHz, span = 40 MHz).

• LO Leakage improvement: 10 to 15 dB.

• High-pass filtered PN sequence spreads LO leakage replicating 
expected spreading shape.



PN N-path Filter Measurement Summary
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Conclusions

• A broadband signal classification receiver 

faces many challenges, namely: front-end 

filtering

• Presented a broadband tunable T-line N-path 

filter that improves in-band insertion loss and filter that improves in-band insertion loss and 

out-of-band rejection of the traditional N-path 

filter

• Presented a PN sequence N-path filter that 

improves spurious leakage of the traditional 

N-path filter
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